1

第12讲 Aspen中的管路模块

田文德

青岛科技大学化工学院

TEL: 0532-84022026

Email: tianwd@qust.edu.cn

本节主要内容

- ❖Pump (泵) 模型的介绍
- **❖Compressor**(压缩机)模型的介绍
- ❖ Valve (阀)模型的介绍
- ❖ Pipe (管段)和 Pipeline(管线)的介绍
- ❖模拟实例

流体输送模型(Pressure Changers)的分类

泵	Pump
压缩机	Compr
多级压缩机	MComper
阀门	Valve
管道	Pipe
管线	Pipeline

Pump (泵)模型

*Pump泵模型

- *Pump模型用于模拟泵和水轮机两种单元设备
- ▶泵 (Pump)
- ▶水轮机(Hydraulic Turbine)

Pump——模型参数①

❖Pump模型有五种工作方式:

指定模型参数

- ○出口压力(discharge pressure)
- ○压力增量(pressure increase)
- ○压力比率 (pressure ratio)
- ○所需功率 (power required)
- 特性曲线 (use performance curve to determine discharge conditions)

Pump——模型参数②

❖最简单的用法是指定出口压力(Discharge pressure),

并给定泵的水力学效率(Pump Efficiency)和驱动机效率(Driver Efficiency),计算得到出口流体状态和所需的轴功率和驱动机电功率。

Pump——特性曲线①

- ❖特性曲线(Performance curve)有三种输入方式:
- ▶列表数据(Tabular Data)
- ▶多项式(Polynomials)
- ▶用户子程序(User Subroutines)
- 列表数据是最常用的输入方式

Pump——特性曲线②

选择特性参数 NPSHP ← Operating Specs Efficiencies Select curve formati Select performance and flow variables Tabular data Performance: Head Polynomials Flow variable: User subroutine Number of curves: C Single curve at operating speed 选择特性曲线数目 C Single curve at reference speed Multiple curves at different speeds Number of curves: Options-Interpolation method for tabular data: Hermite

Pump——特性曲线③

- ❖特性曲线的数目,有三个选项
- ➤操作转速下的单根曲线
 Single curve at operating speed
- ▶参考转速下的单根曲线
 Single curve at reference speed
- ➤不同转速下的多条去曲线
 Multiple curves at different speeds

Pump——特性曲线④

10

- **❖Curve Data**表单中输入数据
- ▶特性曲线变量的单位 Units of curve variables
- ▶每根曲线特性数据表如: Head vs. flow tables
- ▶每根曲线的对应转速 Curve speeds

Pump——特性曲线⑤

❖在Efficiencies表单输入效率数据:

Pump——特性曲线⑥

❖当泵的操作转速与特性曲线的转速不同时,还需要输入操作转速数据

Pump —NPSHR表

- ❖设计泵的安装位置时,应核算"允许汽蚀余量"
- **▶NPSHR** (Net Positive Suction Head Required)
- >NPSHR≈10-Hs
- ▶Hs为允许吸上真空度

Compressor(压缩机)模型

14)

❖Compressor(压缩机)模型

- **❖Compressor** 模型用于模拟四种单元设备
- ▶多变离心压缩机(Polytropic Centrifugal Compressor)
- ▶多变正排量压缩机 (Polytropic Positive)
- ▶等熵压缩机(Isentropic Compressor)
- ▶等熵汽轮机(Isentropic Turbine)

Compr —计算模型①

- **❖Compr**模块提供八种计算模型:
- 〇标准等熵模型 Isentropic
- OASME等熵模型 Isentropic using ASME method
- ○GPSA等熵模型 Isentropic using GPSA method
- **OASME**多变模型 Polytropic using ASME method
- **OGPSA**多变模型 Polytropic using GPSA method
- ○分片积分多变模型 Polytropic using piecewise integration
- ○正排量模型 Positive displacement
- 〇分片积分正排量模型 Positive displacement using piecewise integration

Compr —计算模型②

16

❖八种计算模型如图:

Compr —模型参数①

*Compr模型有五种工作方式:

指定模型参数

- ○排出压力
- ○压力增量
- ○压力比率
- ○所需功率
- ○特性曲线

Compr —效率

- ❖Compr模型有三种效率:
- ▶等熵效率 Isentropic Efficiency
- ▶多变效率 Polytropic Efficiency
- ▶机械效率Mechanical Efficiency

Compr —特性曲线

- ❖压缩机也用特性曲线表征其工作性能 特性曲线有四种输入方式:
- ▶列表数据Tabular Data
- ▶多项式Polynomials
- ▶扩展多项式Extended Polynomials
- ▶用户子程序User Subroutines
- ○列表数据是常用的输入方式

MCompr多级压缩机模型

❖MCompr模型:

MCompr模型用于模拟三种单元设备:

- ▶多级多变压缩机(Multi-stage Polytropic Compressor)
- ▶多级正排量压缩机(Multi-stage Positive Displacement

Compressor)

▶多级等熵压缩机(Multi-stage Isentropic Compressor)

MCompr —模型参数①

- ❖MCompr的模型参数有:
- ➤级数 (Number of stages)

指定压缩机的级数

▶压缩机模型(Compressor model)

有六种计算模型供选用

▶设定方式(Specification type)

指定压缩机的工作方式

MCompr —模型参数②

MCompr的设定方式与Compr模块有所不同:

指定末级排出压力

(Fix discharge pressure from last stage)

指定每级排出条件

(Fix discharge conditions from each stage)

用特性曲线确定排出条件

(Use performance curves to determine discharge conditions)

Specification type		
Fix discharge pressure from last stage:	p:	
C Fix discharge conditions from each stage		
Use performance curves to determine discharge conditions		

MCompr —特性曲线①

- *MCompr特性曲线有三种输入方式:
- ▶列表数据Tabular Data
- ▶多项式Polynomials
- ▶用户子程序User Subroutines

MCompr —特性曲线②

❖可以提供多张特性曲线表(Maps),每张表又可以有多条特性曲线。多级压缩机的每一级可以有多个叶轮(wheels),可以为每个叶轮选用不同的特性曲线表、叶轮直径。

Wheel calculations	Number of maps
Do wheel-to-wheel analysis	No. of performance maps:
Stage No. of wheels 米	Number of curves per map C Single curve at operating speed C Single curve at reference speed C Multiple curves at different speeds Number of curves:

Valve —阀门模型①

❖Valve用来调节流体流经管路时的压降:

Valve —阀门模型②

26

- ❖阀门模型有三种应用方式:
- ▶绝热闪蒸到指定出口压力

Adiabatic flash for specified outlet pressure

▶对指定出口压力计算阀门流量系数

Calculate valve flow coefficient for specified outlet pressure

▶对指定阀门计算出口压力

Calculate outlet pressure for specified valve

Valve 一阀门参数①

❖当使用图中箭头所示的计算类型时:

- ❖需输入以下参数:
- ▶阀门类型(Valve type):截止阀(Globe)、球阀(Ball)、蝶阀(Butterfly)
- ▶厂家(Manufacturer)
- ▶系列/规格(Series/Style):线性流量(linear flow)、等百分比流量(equal percent flow)
- ▶尺寸(Size):公称直径

Valve —阀门参数②

28

Valve —计算选项

*计算阀门小开度状态时计算选项的设置很重要

检查阻塞流动 (Check for choked flow)

计算空泡系数 (Calculate cavitation index)

设置最小出口压力等于阻塞压力

(Minimum outlet pressure:

Set equal to choked outlet pressure)

Pipe —管段模型①

❖管段模型用于计算等直径、等坡度的一段管道的压降和 传热量

Pipe 一管段参数

31

Pipe —热参数设定

- **➢恒温 Constant temperature**
- ▶线性温度剖型 Linear temperature profile
- ▶绝热(零热负荷)Adiabatic(zero duty)
- **▶**热衡算 Perform energy balance

热参数设定表

Pipe 一管件参数

- ❖连接方式: 法兰连接/焊接Flanged/Welded,螺纹连接Screwed
- ❖管件数量: 闸阀Gate valves,蝶阀Butterfly valves,90度肘管Large 90 degree elbows,直行三通 Straight tees,旁路三通Branched tee

Pipeline —管线模型

管线模型用于计算由多段管道串联组成的一条管线的压降

Pipeline —管线参数②

36

自击NEW:

连接状态表

Pipeline —管线参数③

37

单出如图管段数据(Segment data)对话框:

E此对话框中逐段输入每 章段的长度、角度、直径、 造度,或者节点坐标、直 粗糙度。

38

例1】某离心泵以40m³/h的流量将贮水池中 ℃的热水用钢管输送到凉水塔顶,并经喷头喷 凉水池中以达到冷却的目的。已知水在进入喷头 前需要维持49kPa的表压强,喷头入口较离心泵 3m,离心泵较贮水池贮水池液面高5m。泵的吸 管长度(包括所有局部阻力的当量长度,下同) 60m,排出管长度为40m,二者的内径均为 00mm。试计算该离心泵所需提供的压头。

塔建流程图:

指定单位制

41

※指定国际单位制,压力单位设为kPag,如图:

指定组分

《因离心泵输送的流体为水,所以只有一个组 分,如图:

进料物流1的参数

43

输入进料物流1的参数,如图:

指定管路参数(1)

44

定管路B1的参数,包括长度、内径、位置抬高及粗糙度, 4图:

表2某些工业管道的绝对粗糙度

金属管	绝对粗糙度(mm)	非金属管	绝对粗糙度(mm)
[铜管、铜管及铝管	0.01-0.05	干净玻璃管	0.0015-0.01
1.缝铜管或镀锌铁管	0.1-0.2	橡皮软管	0.01-0.03
新的铸铁管	0.25-1.0	木管道	0.25-1.25
新的无缝钢管	0.02-0.1	陶土排水管	0.45-6.0
连度腐蚀的无缝钢管		表面抹得较好的混凝土管	0.3-0.8
业 著腐蚀的无缝钢管	>0.5	表面平整的水泥管	0.3-0.8
旧的铸铁管	>0.85	新石棉水泥管	0.05-0.1
1多年的煤气总管	0.5	中等状况的石棉水泥管	0.03-0.8

指定管路参数(2)

46

指定管路B2的参数,包括长度、内径、位置抬高及粗糙度,如图:

设置离心泵参数

47

指定泵的类型为Pump,排出压力为60 kPag,实际上泵的出口压力应该在物流4的压力指定后即可确定,但Aspen为序贯模块法求解,所以需先输入一个初值,然后再添加一个设计规定来准确计算该值,如图:

添加设计规定(1)

48

在数据浏览器的Flowsheeting Options/Design Spec中新建一个设计规定,如图:

添加设计规定(2)

49

※点击上图的New,出现下图对话框,如图:

添加设计规定(3)

50

点击上图的OK,出现下图窗口,如图:

添加设计规定(4)

51

点击上图的New,出现下图对话框,并定义变量POUT,如图:

添加设计规定(5)

52

点击上图的OK,出现下图对话框并对变量进行如下定义,如图:

添加设计规定(6)

53

※调整离心泵的出口压力,使物流4的出口压力为49kPag,如图:

添加设计规定(7)

54

※调整离心泵的参数,如图:

运行模拟

55

查看模拟结果(1)

56

可见离心泵的压头为15.82m,流量为40m³/h如图:

例2】将IS80-65-125的离心泵放置在例1中给出管路中,试计算该离心泵的实际功率,并确定该的安装高度是否合适。

表1 IS80-65-125的特性曲线数据

Point	Flow	Head	Efficiency	NPSHR
1	30	22.5	0.64	3
2	50	20	0.75	3
3	60	18	0.74	3.5

隐藏设计规定(1)

58

€隐藏设计规定DS-1,如图:

隐藏设计规定(2)

59

点击上图的Hide,出现下图对话框,如图:

隐藏设计规定(3)

60

点击上图的Yes,设计规定DS-1已被隐藏,如图:

由泵的特性曲线计算泵的出口状态

61

《将Pump outlet specification 内容由Discharge pressure更改为Use performance curve to determine discharge conditions ,表示将由泵的特性曲线来计算泵的出口状态,如图:

设置特性曲线

62

在Curve Setup标签下指定特性曲线的形式,如图:

指定离心泵特性曲线参数(1)

63

在Curve Data标签下输入压头流量数据,如图:

指定离心泵特性曲线参数(2)

64

在Efficiencies标签下输入效

率流量数据,如图:

指定离心泵特性曲线参数(3)

65

※在NPSHR标签下输入必须汽 蚀余量流量数据,如图:

运行模拟

66

分析模拟结果

67

模拟运行之后有警告,查看迭代信息,发现警告信息含义为汽蚀余量小于必须汽蚀余量, 如图: 产生该信息的原因是泵的安装高度过大,必须降低安装高度。

降低安装高度(1)

68

将B1的高度改为3m,即泵的安装高度由5m降低至3m,如图:

降低安装高度(2)

69

※将B2的高度改为5m,如图:

重新计算

说明3m的安装高度是合适的,如图:

查看泵的计算结果

71

泵的计算结果已列入表中,如图:

【例3】流量为 5000 kg/h,压强为 7 ar的饱和水蒸汽流经 $\phi 108 \times 4$ mm 的管 i。管道长20m,出口比进口高5m, 【糙度为 0.05 mm。管道采用法兰连接, 沒装有闸阀 1 个, 90° 肘管 2 个。环境 l度为 20°C, 传热系数为 20 W/(m²·K)。 t: 出口处蒸汽的压强、温度和含水率,

例4】流量为 100 m³/h, 温度为 50 °C, 压 为 5 bar的水流经 φ108×4 的管线。管线首 向东延伸 5 m, 再向北 5 m, 再向东 10 m, 向南 5 m, 然后升高 10 m, 再向东 5 m。 内壁粗糙度为 0.05 mm。

· ᄷᄵᆡᆔᆔᄊᄱᇊᆱᄝᄼᇄᇬ

结束

75

下节内容: Aspen中的换热器模块